(y^2-y+2)=(5y-2)

Simple and best practice solution for (y^2-y+2)=(5y-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (y^2-y+2)=(5y-2) equation:



(y^2-y+2)=(5y-2)
We move all terms to the left:
(y^2-y+2)-((5y-2))=0
We get rid of parentheses
y^2-y-((5y-2))+2=0
We calculate terms in parentheses: -((5y-2)), so:
(5y-2)
We get rid of parentheses
5y-2
Back to the equation:
-(5y-2)
We add all the numbers together, and all the variables
y^2-1y-(5y-2)+2=0
We get rid of parentheses
y^2-1y-5y+2+2=0
We add all the numbers together, and all the variables
y^2-6y+4=0
a = 1; b = -6; c = +4;
Δ = b2-4ac
Δ = -62-4·1·4
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{5}}{2*1}=\frac{6-2\sqrt{5}}{2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{5}}{2*1}=\frac{6+2\sqrt{5}}{2} $

See similar equations:

| 35/n-22=21 | | 2x+6x^2-10=0 | | 54=n+10 | | .03x=7500 | | 7x-(5x+6)=3x-33 | | -5n+7-n=n | | 3x+9=5x-2 | | 5-2/5=1/2x-4 | | 3(5n-`)-14n+9=10(n-4)-6n-4(n+1) | | 5x-10=x+3 | | -20b=-40 | | 66=6(n+5) | | x^2-49x+100=0 | | 26x+6+11x+2=156 | | 4-5x=1+3x-6x+11 | | 2.3=5.9-0.4x | | -5=7x-17+5x-12 | | 5-(2/5)=1/2x-4 | | 5*(n^2)+(25/n)=9 | | 17a+68=374 | | 11x+2+26x*6=156 | | 4+(u/5)=-26 | | 5m+7+5(4m-4)=4(m+4) | | (2n)^2=24 | | 1-6x=-5x-4-4+14 | | b+2=22 | | 20+x=170 | | 10^x-2=126 | | (2^x)^x=25 | | a/15-1/5=3/5 | | 3(x+6)=-6x+4(2x+3) | | (x^2-36)^0.5-8=0 |

Equations solver categories